Validation of a high throughput next generation sequencing assay for HIV drug resistance genotyping

Du-Ping Zheng^{1*}, Josh DeVos¹, Kevin Tang², Heather Alexander¹, Guoqing Zhang¹, Clement Zeh¹ 1.International Laboratory Branch, DGHT/CGH, 2. Biotechnology Core Facility Branch, DSR/NCEZID, US Centers for Disease Control and Prevention. Atlanta, USA

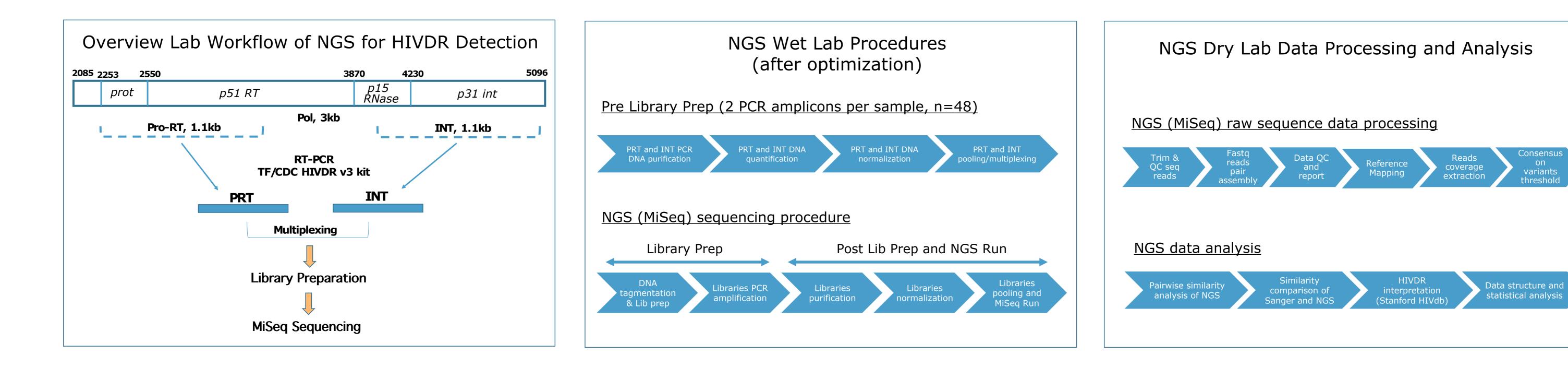
Background

Globally, the number of people living with HIV on antiretroviral treatment (ART) reached 28.7 million in 2021. To ensure the effectiveness of treatment regimens, WHO issued guidelines and action plans for systematic surveillance of HIV drug resistance (DR), including monitoring HIVDR to dolutegravir. Currently, Sangerbased sequencing is the primary technology for HIVDR detection and surveillance. However, it has limitations, including low throughput, high cost, and less sensitivity in detecting variants below 20%. In this study, we developed an amplicon-based next generation sequencing (NGS) using illumina technology on MiSeq

Platform for HIVDR genotyping and assessed its accuracy, precision, reproducibility, and sensitivity compared to the Sanger sequencing method.

Methods

PCR amplicons of HIV protease, reverse transcriptase (PRT), and integrase (INT) genes from 48 analytic samples representing 8 major subtypes and recombinants (>89% of all HIVs) were generated using ThermoFisher HIVDR genotyping kit and sequenced with illumina Nextera-XT kit. NGS sequences were compared with Sanger sequences and analyzed statistically to assess accuracy, precision, reproducibility, and variants detection at 10%, 15%, and 20% thresholds.


Results

Both PRT and INT NGS sequences from 48 amplicon samples exhibited overall >99.5% accuracy (CI 99.5-100%) compared to Sanger sequences. For detecting HIVDR mutations, NGS had 99.7% agreement in PRT and 100% in INT with Sanger sequencing. For precision, NGS produced an overall 100% (ranged 99.8-100%) similarity within 8 replicates from each 12 samples. With the same 8 replicates of 12 samples, NGS generated almost identical data in PRT (99.6%) and INT (99.9%) between 3 independent runs (p=1). In a 96-sample run, NGS generated an average of 30mb data and 33,157 reads coverage per sample, which is sufficient for variant calls.

In this sample panel, NGS detected an average of 2.15 and 4.77 more variants in PRT, 1.85 and 4.35 more in INT at 15% and 10% threshold compared to the Sanger sequencing at 20% threshold, respectively.

Conclusion

We successfully validated illuminabased NGS for HIVDR genotyping with high accuracy and precision compared to Sanger sequencing. The validated NGS provides a higher throughput, potentially lower cost at scale, and sensitive sequencing method for detecting a full spectrum of HIVDR mutations, which can strengthen current HIVDR surveillance and preserve and guide effective ART regimens.

Validation Criteria and Plan

WHO recommended validation criteria

Test samples	>=20 samples	Major subtypes	HIVDR mutations	
Assess criteria	Accuracy (n=20x1)	Precision (n=3x5)	Reproducibility (n=3x5)	Sensitivity (Amp, TF validation)

Accept criteria \geq 90% of pairwise comparisons for each sample must be \geq 98% identical

Validation Assessing Criteria	Samples	Replicates	No. of tests	Test method	Subtotal
				Sanger +	
Accuracy	48	2	1	NGS	96
				NGS	
Precision (intra)	12	8	3		288
Reproducibility (inter)	12	8	3	NGS	288
Sensitivity (10, 15,					
20%)	48	1	1	NGS	48

Attributes of Samples Used for NGS Validation (n=48)

Viral Load (copies/mL)

1000- 5000	5000-10000	10000-100000	>100000	unknown
14	13	16	1	4

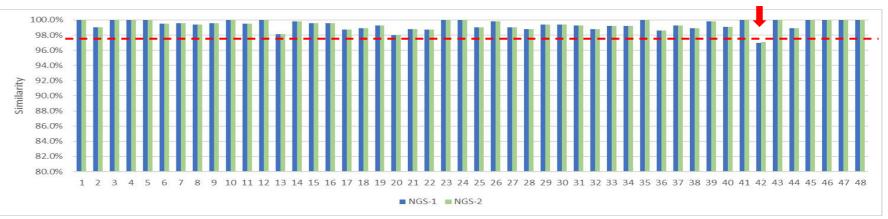
Subtypes (n=8)

A (A1)	В	С	D	F (F1)	01_AE	02_AG	02_AG/A1
2	23	9	3	4	2	2	3

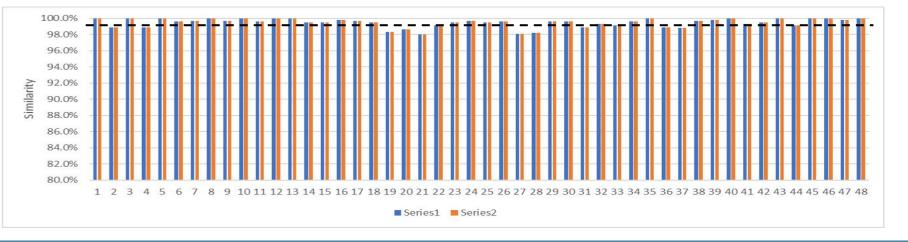
Sample type

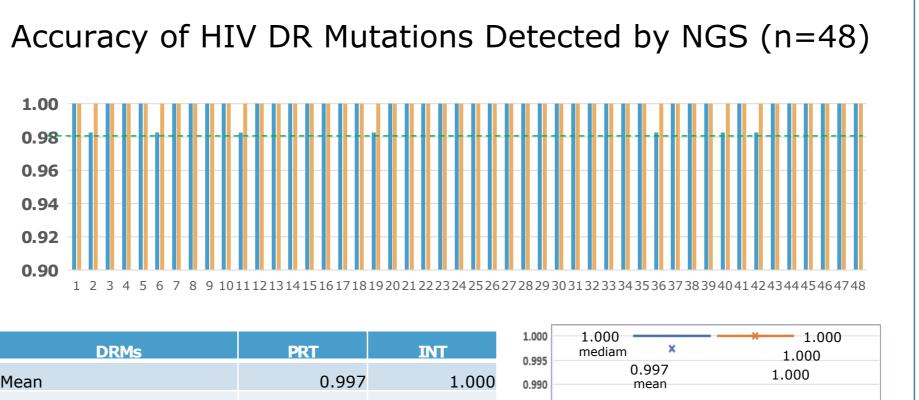
Median

Mode


Standard Devia

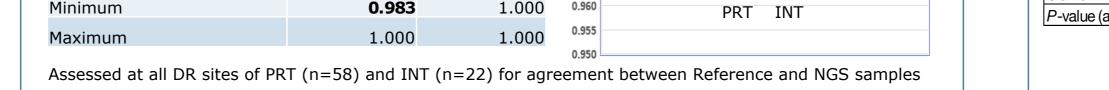
Sample Varianc


Plasma	DBS	Clone
34	10	4


PRT: 47 of 48 tested had \geq 98% similarity scores

INT: 48 of 48 tested had \geq 98% similarity scores

Sanger and NGS Identity Scores of NGS-1 & -2 and between **PRT**: NGS-2 NGS-1 NGS-2 NGS-1 1.000 1.000 L.000 1.000 1.000 0.995 0.995 0.995 0.994 0.991 0.991 0.990 0.990 0.989 0.985 0.985 0.980 0.980 0.975 • 0.971 0.970 0.970 0.970 ..00 = 1000.965 NGS1:NGS2 INT NGS-2 NGS-1 PRT NGS-1 NGS-2 NGS1:NGS2 0.99 1.00 0.99 0.99 1.00 Mean 0.99 0.00645 0.00637 0.00039 Std Dev 0.00552 0.00552 0.00040 Std Dev

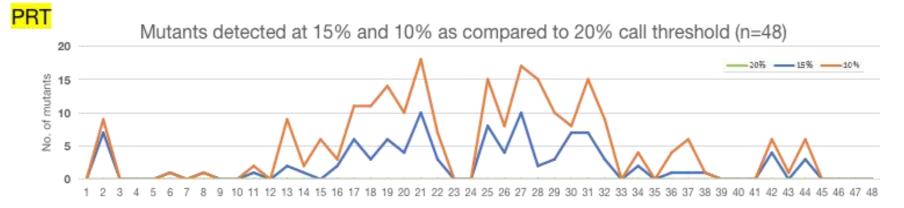


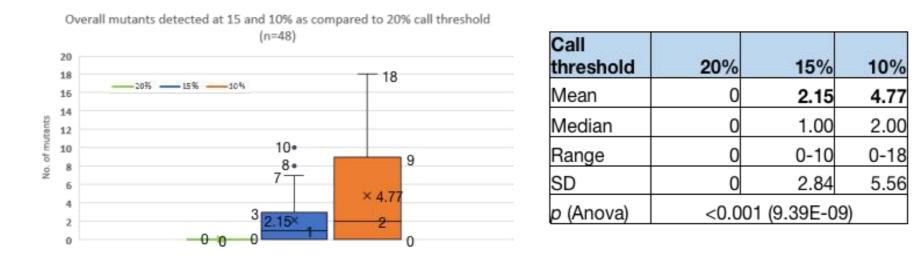
1-15			0.995	mealam	1.000
	0.997	1.000		0.997 mean	1.000
	1.000	1.000	0.985	0.983 •	
	1.000	1.000		min	
ation	0.006	0.000	0.975		
ce	0.000	0.000			-
	0 983	1 000	0.960		

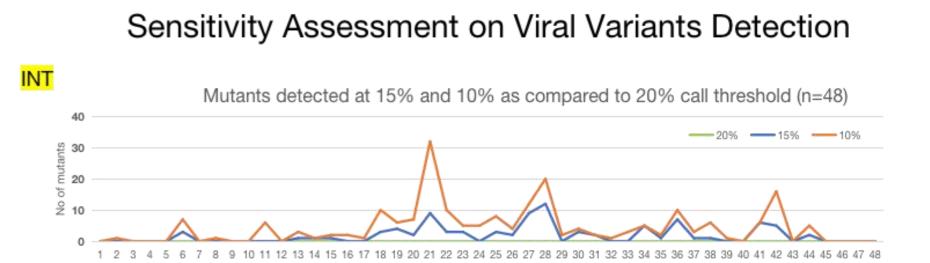
Precision and Reproducibility Test Results (N=12, 8 replicates, Protease and Reverse Transcriptase, PRT)

PRT	PRS04				PRS05			PRS06			PRS08	
8 replicates	Run-1	Run-2	Run-3	Run-1	Run-2	Run-3	Run-1	Run-2	Run-3	Run-1	Run-2	Run-3
Minimum	1	1	1	1	1	1	1	1	1	1	1	1
Maximum	1	1	1	1	1	1	1	1	1	1	1	1
Mean	1	1	1	1	1	1	1	1	1	1	1	1
Std Dev	0	0	0	0	0	0	0	0	0	0	0	C
P-value (anova)	a) 1			1			1				1	
	PRS10			PRS13		PRS14			PRS16			
Minimum	1	1	1	1	1	1	1	1	1	1	1	-
Maximum	1	1	1	1	1	1	1	1	1	1	1	1
Mean	1	1	1	1	1	1	1	1	1	1	1	1
Std Dev	0	0	0	0	0	0	0	0	0	0	0	(
P-value (anova)		1		1			1			1		
		PRS26			PRS28		PRS29			PRS43		
Minimum	1	1	1	1	0.999	0.999	1	1	1	1	1	1
Maximum	1	1	1	1	1	1	1	1	1	1	1	1
Mean	1	1	1	1	0.999429	0.999464	1	1	1	1	1	1
Std Dev	0	0	0	0	0.000504	0.000508	0	0	0	0	0	C

CI (95%)	0.99 - 1.00	0.99 - 1.00	1.00	CI (95%)	0.99 - 1.00	0.99 - 1.00	1.00
p (T. Test)			0.99	p (T. Test)			1.00

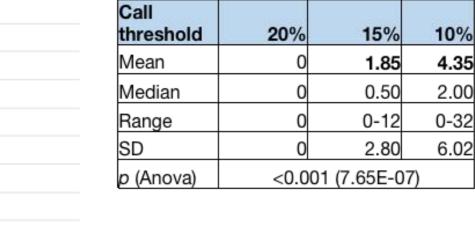



P-value (anova)	1	0.999999633	1	1	


Precision and Reproducibility Test Results (n=12, 8 replicates, Integrase, INT)

Maximum	0.998 1 9995 0882 0.999999	Run-3 1 0.998 1 1 1 0.9995 0 0.000882 125	1 1	Run-2 1 1	Run-3 0.996 1		Run-2 1	Run-3 1	Run-1	Run-2 1	Run-3 1
Maximum Mean 0.9 Std Dev 0.000 <i>P</i> -value (anova)	1 9995 0882 0.999999	1 1 1 0.9995 0 0.000882	1 1	1 1 1	1	1	1	1	1	1	1
Mean0.9Std Dev0.000P-value (anova)	0.999999	0 0.000882		1	1	1	1	- 1			
Std Dev 0.000 P-value (anova)	0.999999	0 0.000882		1	0,000,000			I	1	1	1
P-value (anova)	0.999999		0		0.998286	1	1	1	1	1	1
		125	-	0	0.002016	0	0	0	0	0	0
Minimum		0.999999125		0.999995429			1			1	
Minimum	PRS10		PRS13		PRS14			PRS16			
	1	1 1	1	1	1	1	1	0.998	1	1	1
Maximum	1	1 1	1	1	1	1	1	1	1	1	1
Mean	1	1 1	1	1	1	1	1	0.999143	1	1	1
Std Dev	0	0 0	0	0	0	0	0	0.001008	0	0	0
P-value (anova)	1		1			C	.99999885	9		1	
	PRS2			PRS28		PRS29				PRS43	
Minimum	1	1 1	0.998	1	1	1	1	0.997	1	1	1
Maximum	1	1 1	1	1	1	1	1	1	1	1	1
Mean	1	1 1	0.9995	1	1	1	1	0.998607	1	1	1
Std Dev	0	0 0	0.000882	0	0	0	0	0.001197	0	0	0
P-value (anova)	1		C	.999999912	6	C	.99999658	9		1	

Sensitivity Assessment on Viral Variants Detection



15

° 32

• 20

16

