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Field Results of the Model: Apr - May 2023  Implementation at the site: KenyaEMR - Integrating the ML model into KenyaEMR, an OpenMRS
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Table 2: Risk categorization for patients who were tested for HIV in Kenya from - e e the H_IV _e“glblllty screening process and improving HIV
April 2023 to May 2023 and uploaded to NDW. case finding.
1 REPUBLIC OF KENYA C e .’.,,0
Presented at IAS 2023, the 12th IAS Conference on HIV Science Figure 7 ) NXSCOP Cp _ 723 IAS 2023
Palladium  KeHMIS 23-26 July

P MAKE IT POSSIBLE T — v
MINISTRY OF HEALTH



	Slide 1: Improving case finding efficiency through use of machine learning in Kenya 

